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Class-Specific Correlations of Gene Expressions:
Identification and Their Effects
on Clustering Analyses

Jigang Zhang,1,3 Jian Li,2 and Hongwen Deng1,3,4,*

Current microarray studies primarily focus on identifying individual genes with differential expression levels across different condi-

tions or classes. A potential problem is that they may disregard multidimensional information hidden in gene interactions. In this

study, we propose an approach to detect gene interactions related to study phenotypes through identifying gene pairs with correlations

that appear to be class or condition specific. In addition, we explore the effects of ignoring class-specific correlations (CSC) on corre-

lation-based gene-clustering analyses. Our simulation studies show that ignoring CSC can significantly decrease the accuracy of gene

clustering and increase the dissimilarity within clusters. Our results from a DLBCL (distinct types of diffuse large B cell lymphoma) data

set illustrate that CSC are clearly present and have great adverse effects on gene-clustering results if ignored. Meanwhile, interesting

biological interpretations may be derived from studying gene pairs with CSC. This study demonstrates that our algorithm is simple

and computationally efficient and has the ability to detect gene pairs with CSC that are informative for uncovering interesting regu-

lation patterns.
Introduction

Genes often interact with each other to form transcrip-

tional modules for specific cellular activities or func-

tions.1,2 DNA microarray technology provides a unique

tool to monitor gene-expression levels of thousands of

genes simultaneously. To detect gene-transcriptional mod-

ules in microarray data, a main step is often the application

of clustering analyses,3–6 which can group genes with sim-

ilar expression profiles.4,7,8 In recent years, various cluster-

ing-based methods have been proposed, such as hierarchi-

cal clustering,4 K-means,9 and self-organizing map

(SOM).10,11 It is believed that genes with similar expression

patterns have similar biological functions, and one can

predict functions of unknown genes from their expression

similarity with known genes.4,12

However, biologically, genes involved in the same bio-

logical process or pathway may have different expression

patterns under different conditions.13–16 Such genes could

be informative and reflect novel biological interactions.

For example, in an ‘‘on/off case,’’13 one phenotype is prev-

alent when the expressions of both genes are either

‘‘turned on’’ or ‘‘turned off,’’ whereas the other phenotype

is predominant when only one of these two genes is ex-

pressed. As a result, in an on/off case, we can observe

that the gene pairs can show strong evidence of a reversal

in the signs of the conditional correlations across two phe-

notypes, which will be referred to as ‘‘class-specific correla-

tions’’ (CSC) in this study. CSC can be highly biologically

significant to study disease phenotypes, and therefore it

is important to identify them. The idea behind detecting

CSC is to find genes that only in pairs, and not individu-
The Ame
ally, discriminate given different phenotypes. Identifica-

tion of CSC makes it possible to explore the dependence

and interactions among genes, as well as to reveal molecu-

lar processes that are linked to the study phenotypes.

In most DNA microarray studies, the primary attention

was paid to those single genes showing differential expres-

sion levels across different experiment conditions.17 Most

tests were constructed solely in terms of marginal distribu-

tions of gene-expression profiles that have led to the

discovery of novel genes related to study phenotypes in

microarray experiments.18,19 Most of these methods used

a one-gene-at-a-time strategy, considering only the associ-

ation between single genes and the phenotypes. But they

may disregard the multidimensional information hidden

in gene interactions, which is a potential problem of these

methods.14,20,21 Thus, both genes from a case of CSC are

highly unlikely to appear in a gene list produced by

a one-gene-at-a-time testing approach.

Although some studies in this direction have been

launched,13 to our knowledge, there is no practical method

for identifying genes with CSC and no related study for ex-

ploring the effects of ignoring the existence of CSC on

gene-clustering analyses. To address these issues, we started

with proposing a method to identify genes with CSC by us-

ing DNA microarray data, and then investigated the effects

of ignoring the existence of CSC on gene-clustering analy-

ses, by using both simulated data and a well-known DNA

microarray data set. Our results demonstrated that our

method is simple and computationally efficient to identify

genes with CSC, and that ignoring the existence of CSC

could dramatically affect the outcomes of gene-clustering

analyses.
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Material and Methods

For simplicity, we focus only on two-class microarray data. The

theory and method presented here can be easily extended to mul-

tiple classes. Denote X to be a microarray data matrix with n genes

on the rows and m samples on the columns. In the following dis-

cussion, we assume that the data matrix X is preprocessed and nor-

malized.10,22 Samples x(1),., x(m) are independent observations

of an n-dimensional gene expression vector, x(l) ¼ (xl1,., xln)

(l ¼ 1,., m), with a class-conditional density f(xjy), where y˛{1,

2} is a class variable denoting the biological condition.

Class-Specific Correlations Test
To detect gene pairs with CSC, we first adopt a metric developed by

Fisher23 to identify gene pairs whose correlations significantly

change across two classes after multiple testing corrections;

then, from the identified gene pair list, we select those gene pairs

that show a reversal in the signs of the conditional correlations

across two classes. The Fisher’s method is given as follows.

Given a pair of genes ga and gb, we first define a measure of cor-

relation r(ga, gb) (in this study we adopt ‘‘Pearson’s correlation’’)

between their expression levels. We then obtain both class-condi-

tional correlation coefficients r1 and r2 between ga and gb. To test

whether the correlation between ga and gb changes significantly

across two classes, we perform Fisher’s z-transformations on r1

and r2. Because z-transformed r1 (or r2) is normally distributed,

it allows for detecting difference between r1 and r2 with the

following equations:23,24

zy ¼ 0:5loge

�����1þ ry

1� ry

����� (1)

D ¼ z1 � z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 3
þ 1

n2 � 3

r : (2)

In Equation (1), zy is the z-transformed correlation coefficient in

class y (y ¼ 1 or 2) and is approximately normally distributed with

mean zy(ry) and variance 1/(ny� 3).23 In Equation (2), the resultant

D-value then can be examined with a critical value of the standard

normal distribution.25 To adjust for multiple testing, we adopt the

method of false positive control proposed by Storey.26

Clustering Algorithms
One purpose of this study is to explore the effects of ignoring the

existence of CSC on performance of gene-clustering analyses for

microarray data. We will perform all clustering analyses based on

the Pearson correlation distance.5,27–29 The Pearson correlation

distance between expression profiles of two genes ga and gb is de-

fined as d(ga, gb)¼ 1 � jcor(ga, gb)j, where cor(ga, gb) is the Pearson’s

correlation coefficient between the expression profiles of genes

a and b. Brief descriptions are given below for three clustering al-

gorithms: hierarchical, K-means, and partitioning around me-

doids (PAM), which are used for clustering analyses in this study.

Hierarchical clustering is a heuristic approach and relies on pair-

wise similarities between gene-expression profiles. This algorithm

minimizes the within-cluster variability and generally displays the

degree of similarity between genes as a dendrogram.4 In the pres-

ent study, we use the implementation of ‘‘average linkage’’ hierar-

chical clustering method.30

K-means clustering is an algorithm that needs to determine the

initial cluster centers k in advance. The algorithm starts with set-
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ting k centroids randomly. Assigning genes to centroids and select-

ing new centroids based on current clustering results are then iter-

ated until no significant changes in cluster centroids are observed

between iterations.31

PAM is similar to K-means clustering, but uses medoids instead

of centroids. PAM selects k representative genes (medoids) among

a set of genes, assigns the remaining genes to the groups identified

by the nearest medoid, and then determines a new medoid for

each cluster by finding genes with minimum total dissimilarity

to all other cluster elements. Next, all genes are reassigned to their

clusters according to the new set of medoids. The procedure is

repeated until no more changes of the clustering appear.32

Evaluation of Effects of Class-Specific Correlations on Gene-Clustering

Results

In this study, we compare clustering results measured under three

conditions: (1) data with class label y ¼ 1 and 2; (2) data with class

label y ¼ 1; and (3) data with class label y ¼ 2. The comparison

among three conditions can show the effects on gene-clustering

analyses when ignoring the existence of CSC and by using all sam-

ples across two classes. We use several evaluation criteria to assess

the qualities of clustering results,33,34 which are described below.

In the case of simulation data, the correct number of clusters is

known. Let k be the number of clusters, and denote C0
j (j ¼ 1,.,k)

be the set of genes that truly belong to the cluster j. Three indices

are adopted to compare gene-clustering results.

Index 1:

V1ðkÞ ¼
1

k

Xk

j¼1

 
n
�

CjXC0
j

�
n
�

C0
j

�
!

, (3)

where Cj denotes the set of genes being assigned to cluster j by

a clustering algorithm; n(CjXC0
j ) denotes the number of overlap-

ping genes between Cj and C0
j ; and n(C0

j ) denotes the number of

genes truly belonging to cluster j. This index reflects the accuracy

rate of gene clustering by a clustering algorithm.

Index 2:

V2ðkÞ ¼
1

k

Xk

j¼1

d
�
Cj

�
, (4)

where d(Cj) is the average Pearson’s correlation distance within

cluster j. This index represents the average dissimilarity of genes

within clusters.

Index 3:

V3ðkÞ ¼
1

k

Xk

j¼1

maxd
�
Cj

�
, (5)

where maxd(Cj) is the maximal Pearson’s correlation distance

within cluster j. This index represents the average maximal dissim-

ilarity of genes within clusters.

For a real data set, the optimal number of clusters is unknown,

so we cannot investigate the accuracy rates of gene clustering un-

der different conditions via Index 1. However, when genes with

similar expression patterns are clustered together, it is expected

that they share regulations by some of the same transcription

factors and that each cluster contains the genes with minimum

dissimilarity. Therefore, we can compare clustering results from

the three conditions according to the abilities of minimizing

gene dissimilarity within clusters via Indices 2 and 3. Additionally,

the biological merit is a main criterion to evaluate genes with CSC.

We use the analyses of GO ontology and KEGG pathway35 to
8, 2008



Figure 1. Estimation of Index 1
(A) Hierarchical clustering.
(B) K-means clustering.
(C) PAM.
Abbreviations: CS, control samples; TS, treatment samples; C&T, control and treatment samples. Vertical lines on bars indicate the cor-
responding standard deviations.
extract or infer the biological processes and molecular functions of

genes with the highest occurrence among identified gene pairs,

which show significant CSC across two classes.

To evaluate the effect of CSC on gene clustering for microarray

data, we focus on investigating whether there is a significant dif-

ference between values of each index measured from data labeled

with y ¼ 1 (or y ¼ 2) and data labeled with y ¼ 1 and 2. For exam-

ple, we verify whether there is a significant difference between two

values of Index 2, which are calculated from data with label y ¼ 1

(or y ¼ 2) and data with label y ¼ 1 and 2, respectively. For simu-

lation data, statistical analyses are carried out by the paired Stu-

dent’s t test, because the data under the two different conditions

are matched in pairs. For the real data, statistical inference is based

on bootstrapping,36,37 as described as follows.38

Step 1: Compute the raw difference (Iraw) between the two values

of Index 2 calculated from the two conditions for a clustering algo-

rithm under consideration.

Step 2: Generate new independent random samples of size m by

sampling with replacement from original samples (y ¼ 1 and 2)

and randomly assign them into two groups labeled with y ¼ 1

and y ¼ 2, respectively, where m denotes the size of original sam-

ples. Then calculate the resulting difference (I*) of two values of

Index 2 computed in the two different conditions.

Step 3: Repeat step 2 a large number of times, B (B¼ 1000), yield-

ing I1*,.,IB*.

Step 4: Based on the empirical null distribution, calculate the

bootstrap empirical p value as

p ¼ B�1
X

I�s RIraw

1 or p ¼ B�1
X

I�s %Iraw

1ðs ¼ 1,2,.BÞ:

This proportion estimates the probability of obtaining a value as

high as Iraw just by chance.

Results

Simulation Data

For this study, we focus on two-class microarray expression

data. Simulation studies are carried out to investigate the

effects of ignoring the existence of CSC on the perfor-

mance of gene-clustering analyses for microarray data.
The Ame
For convenience, two classes are labeled as ‘‘control’’ and

‘‘treatment,’’ respectively. The sample size of each class

group is equal to 25. For each scenario, each simulated

data set consists of a total of 15 genes separated into 3 non-

overlapping clusters containing 5 genes each. To simulate

these genes, a multivariate normal distribution is applied

to generate the expression profiles of the 15 genes with

three blocks (one block represents one cluster) for control

and treatment samples. For control samples (or treatment

samples), the 15 genes are generated from a multivariate

normal distribution with mean 0 and standard deviation

1.0. The following is the covariance matrix for control

samples:

X
¼

2
4
P

0 . .
0

P
0 «

0 0
P

0

3
5,

where
P

0 is a 5 3 5 symmetric matrix with ‘‘1’’ on the di-

agonal and ‘‘r’’ off-diagonal (r is the correlation coefficient

between two genes because the variance of each gene is set

as 1.0). In simulations, we set only one gene’s correlation

coefficients in each cluster that appear class specific across

two classes. For example, in the control group, the correla-

tion coefficients of gene g with other genes of cluster k (k ¼
1, 2, or 3) are set to 0.9, whereas in the treatment group,

the corresponding correlation coefficients are equal

to 0.9. The remaining genes of cluster k have the same

covariance matrix across control and treatment samples.

We vary the correlation coefficients r as five levels

(r ˛{0.9, 0.8, . . ., 0.5}). For each scenario, we adopt three

clustering algorithms as described in Material and Methods

section. One thousand replicates are carried out for each

scenario, and the effects of ignoring CSC on clustering

analyses will be assessed in terms of the three evaluation

indices (Indices 1, 2, and 3).

As in Figure 1, our analysis results show strong evidence

that the clustering accuracy rate (Index 1) measured from
rican Journal of Human Genetics 83, 269–277, August 8, 2008 271



Figure 2. Estimation of Index 2
(A) Hierarchical clustering.
(B) K-means clustering.
(C) PAM.
See Figure 1 for definitions of CS, TS, and C&T.
control samples (or treatment samples) is significantly

higher (p < 0.001) than that measured from both control

and treatment samples for each different correlation coef-

ficient level. This indicates that using all samples across

two classes and ignoring CSC can greatly decrease the

clustering accuracy rates. For the three clustering algo-

rithms, the hierarchical algorithm and PAM yield higher

clustering accuracy rates than does the K-means algorithm

when using only control or treatment samples. When us-

ing all control and treatment samples, the performance of

the hierarchical algorithm on the clustering accuracy rates

is the worst among the three algorithms, and its standard

deviations of clustering accuracy rates are greater than

that of K-means and PAM algorithms. Out of 15 genes,

we set 3 genes with CSC, so ideally the clustering accuracy

rates are 80% measured from all samples if only these 3

genes are assigned to incorrect clusters. According to Fig-

ure 1, the clustering accuracy rates from the hierarchical

algorithm are around 70%; the clustering accuracy rates

from the K-means algorithm are around 80%; and the

clustering accuracy rates from the PAM algorithm are

close to 90%. These results indicate that the performance
272 The American Journal of Human Genetics 83, 269–277, August
of the PAM algorithm is the best among the three algo-

rithms.

For Indices 2 and 3 as shown in Figures 2 and 3, the

values of these two indices measured from all samples are

significantly greater (p < 0.001) than those from only con-

trol (or treatment) samples. Indices 2 and 3 reveal the dis-

similarity level within clusters, and especially for Index 3,

the greater values of this index are related to higher possi-

bility of grouping some genes into incorrect clusters. From

Figures 2 and 3, the results show that ignoring the exis-

tence of CSC in gene clustering can increase the within-

cluster dissimilarity, which may mainly result from assign-

ing genes into incorrect clusters. Additionally, we find that

the differences among values of Index 2 (or Index 3) mea-

sured from three conditions decrease with the decrease of

average correlation coefficients of each cluster. Meanwhile,

it is observed that the performances of three clustering

algorithms on Indices 2 and 3 are similar.

Further simulation studies, such as using different num-

bers of arrays in each group and different number of genes

per cluster (provided as Supplemental Data), clearly show

that the gene-clustering analyses results from total samples
Figure 3. Estimation of Index 3
(A) Hierarchical clustering.
(B) K-means clustering.
(C) PAM.
See Figure 1 for definitions of CS, TS, and C&T.
8, 2008



always decrease the clustering accuracy rates and increase

the within-cluster dissimilarity, compared to those from

only control (or treatment) samples (see Tables S1–S12).

Real Microarray Data

In this section, we apply our method to detect the CSC in

a publicly available microarray data set, the DLBCL (dis-

tinct types of diffuse large B cell lymphoma) data set, and

we demonstrate the effects of ignoring the existence of

CSC on gene clustering. DLBCL expression data set was

taken from the study of Alizadeh et al.17 DLBCL is the

most common subtype of non-Hodgkin’s lymphoma.

There are 47 samples in the DLBCL data set, among which

24 samples are from ‘‘germinal centre B-like’’ group and 23

samples are from ‘‘activated B-like’’ group. After the expres-

sion intensity quality filter as in the original publication,

each sample contains 4026 genes.17 In this study, we label

‘‘germinal centre B-like’’ as ‘‘G1’’ and ‘‘activated B-like’’ as

‘‘G2’’ for convenience.

First we apply our method to detect the gene pairs with

CSC in the DLBCL data set. Because the identification of

CSC may involve thousands of tests, we apply the ‘‘q-value’’

method26 to control false positives among significant re-

sults. The histogram in Figure 4 displays the empirical distri-

bution of the difference between z1 and z2 (transformed

correlation coefficients) for every gene pair in the DLBCL

data set. The two vertical lines in the histogram mark the

significant cut-off values when the significant q-value is

set as 0.05 for false positives control. In this study, the cut-

off points of (z1 � z2) are set at 51.45 and we identify

331 gene pairs with CSC in DCBCL. Among the identified

gene pairs, the most significant gene pair is GENE941X

and GENE435X (for the exact gene names and more infor-

mation, please refer to Lymphoma/Leukemia Molecular

Profiling Project, LLMPP). For G1 samples, there is a high

negative correlation between GENE941X and GENE435X;

for G2 samples, the situation is reversed and the two genes

show a strong positive correlation. The correlation coeffi-

cients of this pair of genes are �0.620 and 0.848 in G1

Figure 4. Empirical Distribution of z1� z2
for gene pairs in the DLBCL Data Set
The two vertical lines mark the significant
cut-off values when the significant q-value
is set as 0.05.

and G2 samples, respectively, and the

difference between the corresponding

z-transformed correlation coefficients

is 1.972. Based on this result, there

may be some interaction between

these two genes that is associated

with the study phenotypes in the ex-

periment.

In Table 1, we list 10 genes with the

highest occurrence in identified gene

pairs. We use public gene databases

of gene ontology and KEGG pathway to annotate those

genes. In the present case, 3 out of the 10 genes have no

available information in two databases. We briefly investi-

gate the qualitative biological significance of the remain-

ing 7 genes. Based on pathway analyses, these 7 genes

are involved in processes such as cyclins and cell-cycle reg-

ulation, signal transport pathway, cell adhesion, cell mi-

gration, and immune response. GO annotations of these

genes indicate that they may play some fundamental roles

in cell-function regulations, such as transcription coactiva-

tor activity, transcription factor activity, protein binding,

DNA (RNA) binding, and receptor activity. Among these

7 genes, some genes have been proved to be associated

with DLBCL, for example GENE1212X (IRF-4).17,39

To evaluate the effects of ignoring the existence of CSC

on gene clustering, we compare gene clustering results

from three different conditions: (1) data from both G1

and G2 samples; (2) data from only G1 samples; and (3)

data from only G2 samples. Because of space limitations,

we focus on only a handful of prominent genes. Table 2

shows 10 gene pairs with the most significant CSC and

the precise values are listed with raw p values and q values

for those genes pairs. We apply three selected clustering

Table 1. Ten Genes with the Highest Occurrence from Gene
Pairs with Significant CSC in the DLBCL Data Set

Frequency Gene ID

Description of the Genes

in DLBCL Database

1 22 GENE3943X unknown; clone ¼ 2013

2 20 GENE3294X CD38; clone ¼ 123264

3 12 GENE1212X IRF-4; clone ¼ 270770

4 11 GENE3942X unknown; clone ¼ 2015

5 10 GENE507X unknown; clone¼ 1355820

6 10 GENE19X MYO1G; clone ¼ 1350823

7 10 GENE1251X CCND2; clone ¼ 366412

8 10 GENE3384X ITGAL; clone ¼ 154015

9 9 GENE1472X ATF-6; clone ¼ 158183

10 9 GENE3872X TLR6; clone ¼ 1339051
The American Journal of Human Genetics 83, 269–277, August 8, 2008 273



algorithms to cluster these genes and show the effects of ig-

noring CSC on gene clustering. For each of the three clus-

tering algorithms, we compute the two index values (Index

2 and Index 3) by Equation (4) and (5) over a range of

k values (k denotes the number of cluster) from 2 to 10,

because the optimum value for number of clusters is

unknown in the experiment. The results are displayed in

Tables 3 and 4, respectively.

As shown in Tables 3 and 4, for different numbers of

clusters k and different clustering algorithms, most values

of Indices 2 and 3 calculated from both G1 and G2 samples

are significantly greater (p< 0.01) than those from G1 sam-

ples. Ignoring CSC leads to incorrectly estimating correla-

tion coefficients between genes, assigning some genes

into incorrect clusters, and increasing the within-cluster

dissimilarity. Additionally, the values of Indices 2 and 3

measured from both G1 and G2 samples are not signifi-

cantly greater (p > 0.05) than indices measured from G2

groups. Based on the simulation studies, Indices 2 and 3

can increase with the decreasing mean of correlation levels

within clusters. In this case, for G1 samples the mean of

correlation coefficients is 0.25, close to that calculated

from the total samples.

Based on our simulation results, those three clustering

algorithms are performing similarly with respect to Indices

2 and 3. This indicates that there is no algorithm among

the three investigated best minimizing the dissimilarity

Table 2. The Raw p Values and q Values for the Top 10 Gene
Pairs with the Most Significant CSC in DLBCL Data Set

Gene IDs Raw p Value q Value

1 GENE941X GENE435X 2.73e-10 1.99e-3

2 GENE2536X GENE2364X 1.40e-09 5.13e-3

3 GENE3943X GENE801X 3.66e-09 8.91e-3

4 GENE258X GENE455X 6.52e-09 1.01e-2

5 GENE878X GENE1739X 6.94e-09 1.01e-2

6 GENE2733X GENE1473X 9.50e-09 1.01e-2

7 GENE2733X GENE1472X 9.72e-09 1.01e-2

8 GENE713X GENE507X 1.49e-08 1.08e-2

9 GENE18X GENE1144X 1.55e-08 1.08e-2

10 GENE1996X GENE3853X 1.60e-08 1.08e-2

Table 3. The Average Within-Cluster Dissimilarity Measured
from the Three Conditions over Different Numbers of Clusters
and Three Different Clustering Algorithms in DLBCL Data Set

k ¼ 2 k ¼ 4 k ¼ 6 k ¼ 8 k ¼ 10

Hierarchical G1 and G2 0.52 0.30 0.23 0.16 0.11

G1 0.53 0.35 0.20 0.12 0.09

G2 0.21** 0.13** 0.09** 0.07** 0.04**

K-means G1 and G2 0.52 0.37 0.21 0.17 0.12

G1 0.51 0.31 0.21 0.15 0.09

G2 0.34** 0.21** 0.13** 0.07** 0.05**

PAM G1 and G2 0.56 0.39 0.25 0.18 0.11

G1 0.54 0.37 0.20 0.13 0.08

G2 0.34** 0.23** 0.12** 0.08** 0.05**

**p < 0.01.
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within clusters when clustering genes with CSC are pres-

ent. From Tables 3 and 4 the results of the three clustering

algorithms are similar except the results of the hierarchical

clustering algorithm from G2 samples. This is because in

some clusters, the hierarchical algorithm assigned fewer

genes (even one gene) than other algorithms. These small

size clusters have lower within-cluster dissimilarity levels

in this case, so that the overall mean and maximal

within-cluster dissimilarity may decrease in clustering re-

sults by the hierarchical algorithm.

From our simulation study, it is observed that ignoring

the existence of CSC can greatly affect the accuracy of

gene-clustering analyses for microarray data. In general

clustering analyses, clustering algorithms are always ap-

plied across all classes without considering the existence

of CSC. This can lead to incorrect correlation estimation

of gene pairs, and these genes may be incorrectly assigned

by those correlation-based clustering algorithms. In the

DLBCL data set, taking the hierarchical clustering algo-

rithm, for example, we elucidate the effects of ignoring

CSC on gene-clustering results by using genes listed in Ta-

ble 2. As shown in Figure 5, the plot A is the dendrogram of

these genes that is built with both G1 and G2 samples, and

plots B and C show the clustering results with only G1 and

G2 samples, respectively. It can be observed that the plot A

is quite different from plots B and C. Taking GENE941X

and GENE435, for example, in the plot A, the two genes

are respectively grouped into two distant clusters, which

indicates that there seems to be no apparent relationship

between these two genes. Whereas, as we point with ar-

rows in plots B and C, where both genes are grouped to-

gether first, this indicates that there seems to be similar ex-

pression patterns between two genes. As mentioned above,

one important function of clustering analyses in microar-

ray data is to search similar functional genes by clustering

genes with similar expression patterns. However, the re-

sults of Figure 5 indicate that in clustering analyses ignor-

ing the existence of CSC will interfere with the findings of

genes with similar expression patterns that may be related

to study phenotypes.

Table 4. The Average Maximal Within-Cluster Dissimilarity
Measured from the Three Conditions over Different Numbers
of Clusters and Three Different Clustering Algorithms in
DLBCL Data Set

k ¼ 2 k ¼ 4 k ¼ 6 k ¼ 8 k ¼ 10

Hierarchical G1 and G2 0.90 0.57 0.52 0.40 0.28

G1 0.98 0.82* 0.49 0.31 0.27

G2 0.45* 0.30* 0.23** 0.19* 0.12**

K-means G1 and G2 0.93 0.76 0.42 0.42 0.31

G1 0.93 0.68 0.51 0.42 0.27

G2 0.68** 0.51** 0.34** 0.19** 0.14**

PAM G1 and G2 0.96 0.83 0.61 0.48 0.29

G1 0.96 0.89 0.51 0.38 0.24

G2 0.67** 0.66 0.34* 0.22** 0.13**

*p < 0.05; **p < 0.01.
8, 2008



Figure 5. Hierarchical Dendrograms of 10 Gene Pairs with the Most Significant CSC
(A) Data from both G1 and G2 samples.
(B) Data from G1 samples only.
(C) Data from G2 samples only.
Discussion

In this study, rather than focusing on individual genes that

have the strongest evidence of differential expressions, we

present a novel approach to identify gene pairs with CSC

and explore the effects of ignoring CSC on gene-clustering

analyses. Identification of gene pairs with CSC makes it

possible to explore dependence and interactions among

genes and may yield novel biological insights that are un-

detectable by focusing only on individual genes with

strong evidence of differential expressions. Thus, our

method can provide complementary evidence to uncover

or confirm molecular mechanisms underlying, for exam-

ple, complex human diseases.

Our results fromthe DLBCL data set signify that gene pairs

with CSC clearly exist and some interesting biological inter-

pretations may be derived from those gene pairs with signif-

icant CSC. As shown in Table 1, those identified genes are

involved in somecrucial biological processes, suchas cyclins

and cell-cycle regulation, signal transport pathway, and im-

mune response, and these genes may suggest some specific

pathway information. These results indicate that our

method has the ability to detect gene pairs with CSC and

the potential to help identify new gene-regulation patterns.

Because one purpose of gene-clustering analyses is to

group genes with similar biological functions and predict
The Ame
functions of genes not studied previously, it is desired

that the unannotated genes are placed into clusters com-

posed primarily of genes with known functional annota-

tions.40 However, as shown in our results, ignoring exis-

tence of CSC between genes can have a great effect on

general clustering results, and accordingly may greatly af-

fect the accuracy of gene functional prediction for those

unknown genes. Our simulation results show that ignor-

ing CSC greatly decreases the accuracy of clustering analy-

ses and increases the dissimilarity within clusters. One

advantage of our method is that we can identify the genes

with CSC and correct the relationships of genes to supple-

ment our current knowledge on pathway identification.

The main finding of analyzing the DLBCL data set in our

study is that the analyses demonstrate the differences of

clustering results measured from different conditions

(both G1 and G2 samples; only G1 samples; only G2 sam-

ples). The clustering results of the top 10 pairs of genes

with significant CSC show that ignoring CSC would in-

crease within-cluster dissimilarity (Tables 3 and 4). These re-

sults demonstrate one important pitfall of general cluster-

ing analyses without considering CSC, i.e., it would be

likely to group some genes into incorrect clusters and thus

make wrong determination in gene-function prediction

and pathway analyses. Thus it can be more reliable for con-

sidering genes with CSC to make gene-clustering analyses.
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In addition, because the statistical inference of Fisher’s

z transformation of correlation coefficients is based on

asymptotical normal theory, permutation tests are more

reasonable for applying Fisher’s z transformation to iden-

tify the gene pairs with CSC when the sample size is small.

However, it is practically relatively more difficult to imple-

ment permutation tests for microarray data analysis, espe-

cially for identifying the gene pairs with CSC, because of

the thousands of tests involved in a microarray experi-

ment. Thus, applying permutation tests to identify CSC

would be very time consuming. A possible path, when

the sample size is small (e.g., 15), is to first use our method

to select the top gene pairs with the highest D values ac-

cording to Equations (1) and (2), and then apply permuta-

tion tests to these selected gene pairs for empirical

p values.

In summary, our algorithm has the ability to uncover

gene pairs with CSC that show promising regulation pat-

terns, and it is simple and computationally efficient. One

advantage of our algorithm lies in its potential ability to

find genes related to study phenotypes that may not be de-

tected by traditional methods. More importantly, it can

help to correctly uncover some unknown genes that may

be involved in some regulation patterns related to study

phenotypes. In addition, although we have illustrated

our method by two-class microarray experiments, our

method can also be extended to other cases, such as multi-

ple-class studies.

Supplemental Data

Supplemental Data include 12 tables and are available at http://

www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

CSC test, http://z.web.umkc.edu/zhangjig/ (program for our pro-

posed method)

DLBCL data set, http://llmpp.nih.gov/lymphoma/data.shtml

LLMPP, http://llmpp.nih.gov/lymphoma/data/figure1/figure1.cdt
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